iOS蓝牙中的进制转换

Bluetooth4.0.jpg

最近在忙一个蓝牙项目,在处理蓝牙数据的时候,经常遇到进制之间的转换,蓝牙处理的是16进制(NSData),而我们习惯的计数方式是10进制,为了节省空间,蓝牙也会把16进制(NSData)拆成2进制记录。这里我们研究下如何在他们之间进行转换。

假设我们要向蓝牙发送0x1B9901这条数据

Byte转NSData

Byte value[3]={0};
value[0]=0x1B;
value[1]=0x99;
value[2]=0x01;
NSData * data = [NSData dataWithBytes:&value length:sizeof(value)];
//发送数据
[self.peripheral writeValue:data forCharacteristic:self.write type:CBCharacteristicWriteWithoutResponse];
  • 优点:这种方法比较简单,没有进行转换,直接一个字节一个字节的拼装好发送出去。

  • 缺点:当发送数据比较长时会很麻烦,而且不易更改。

NSString转NSData

- (NSData *)hexToBytes:(NSString *)str {
    NSMutableData* data = [NSMutableData data];
    int idx;
    for (idx = 0; idx+2 <= str.length; idx+=2) {
        NSRange range = NSMakeRange(idx, 2);
        NSString* hexStr = [str substringWithRange:range];
        NSScanner* scanner = [NSScanner scannerWithString:hexStr];
        unsigned int intValue;
        [scanner scanHexInt:&intValue];
        [data appendBytes:&intValue length:1];
    }
    return data;
}
//发送数据
[self.peripheral writeValue:[self hexToBytes:@"1B9901"] forCharacteristic:self.write type:CBCharacteristicWriteWithoutResponse];
  • 优点:比较直观,可以一次转换一长条数据,对于一些功能简单的蓝牙程序,这种转换能处理大部分情况。
  • 缺点:只能发送一些固定的指令,不能参与计算。

求校验和

接下来探讨下发送的数据需要计算的情况。 最常用的发送数据需要计算的场景是求校验和(CHECKSUM)。这个根据硬件厂商来定,常见的求校验和的规则有:

  • 如果发送数据长度为n字节,则CHECKSUM为前n-1字节之和的低字节
  • CHECKSUM=0x100-CHECKSUM(上一步的校验和)

如果我要发送带上校验和的0x1B9901,方法就是:

- (NSData *)getCheckSum:(NSString *)byteStr{
    int length = (int)byteStr.length/2;
    NSData *data = [self hexToBytes:byteStr];
    Byte *bytes = (unsigned char *)[data bytes];
    Byte sum = 0;
    for (int i = 0; i<length; i++) {
        sum += bytes[i];
    }
    int sumT = sum;
    int at = 256 -  sumT;
    
    printf("校验和:%d\n",at);
    if (at == 256) {
        at = 0;
    }
    NSString *str = [NSString stringWithFormat:@"%@%@",byteStr,[self ToHex:at]];
    return [self hexToBytes:str];
}

//将十进制转化为十六进制
- (NSString *)ToHex:(int)tmpid
{
    NSString *nLetterValue;
    NSString *str =@"";
    int ttmpig;
    for (int i = 0; i<9; i++) {
        ttmpig=tmpid%16;
        tmpid=tmpid/16;
        switch (ttmpig)
        {
            case 10:
                nLetterValue =@"A";break;
            case 11:
                nLetterValue =@"B";break;
            case 12:
                nLetterValue =@"C";break;
            case 13:
                nLetterValue =@"D";break;
            case 14:
                nLetterValue =@"E";break;
            case 15:
                nLetterValue =@"F";break;
            default:
                nLetterValue = [NSString stringWithFormat:@"%u",ttmpig];
                
        }
        str = [nLetterValue stringByAppendingString:str];
        if (tmpid == 0) {
            break;
        }
    }
//不够一个字节凑0
    if(str.length == 1){
        return [NSString stringWithFormat:@"0%@",str];
    }else{
        return str;
    }
}
//发送数据
NSData *data = [self getCheckSum:@"1B9901"];//data=<1b99014b>
[self.peripheral writeValue:data forCharacteristic:self.write type:CBCharacteristicWriteWithoutResponse];

拆分数据

这种是比较麻烦的,举个栗子:在传输某条信息时,我想把时间放进去,不能用时间戳,还要节省空间,这样就出现了一种新的方式存储时间。 这里再补充一些C语言知识:

  • 一个字节8位(bit)
  • char 1字节 int 4字节 unsigned 2字节 float 4字节

存储时间的条件是:

  • 只用四个字节(32位)
  • 前5位表示年(从2000年算起),接着4位表示月,接着5位表示日,接着5位表示时,接着6位表示分,接着3位表示星期,剩余4位保留。

这样直观的解决办法就是分别取出现在时间的年月日时分星期,先转成2进制,再转成16进制发出去。当然你这么写进去,读的时候就要把16进制数据先转成2进制再转成10进制显示。我们就按这个简单粗暴的思路来,准备工作如下:

10进制转2进制

//  十进制转二进制
- (NSString *)toBinarySystemWithDecimalSystem:(int)num length:(int)length
{
    int remainder = 0;      //余数
    int divisor = 0;        //除数
    
    NSString * prepare = @"";
    
    while (true)
    {
        remainder = num%2;
        divisor = num/2;
        num = divisor;
        prepare = [prepare stringByAppendingFormat:@"%d",remainder];
        
        if (divisor == 0)
        {
            break;
        }
    }
    //倒序输出
    NSString * result = @"";
    for (int i = length -1; i >= 0; i --)
    {
        if (i <= prepare.length - 1) {
            result = [result stringByAppendingFormat:@"%@",
                      [prepare substringWithRange:NSMakeRange(i , 1)]];

        }else{
            result = [result stringByAppendingString:@"0"];

        }
    }
    return result;
}

2进制转10进制

//  二进制转十进制
- (NSString *)toDecimalWithBinary:(NSString *)binary
{
    int ll = 0 ;
    int  temp = 0 ;
    for (int i = 0; i < binary.length; i ++)
    {
        temp = [[binary substringWithRange:NSMakeRange(i, 1)] intValue];
        temp = temp * powf(2, binary.length - i - 1);
        ll += temp;
    }
    
    NSString * result = [NSString stringWithFormat:@"%d",ll];
    
    return result;
}
### 16进制和2进制互转
- (NSString *)getBinaryByhex:(NSString *)hex binary:(NSString *)binary
{
    NSMutableDictionary  *hexDic = [[NSMutableDictionary alloc] init];
    hexDic = [[NSMutableDictionary alloc] initWithCapacity:16];
    [hexDic setObject:@"0000" forKey:@"0"];
    [hexDic setObject:@"0001" forKey:@"1"];
    [hexDic setObject:@"0010" forKey:@"2"];
    [hexDic setObject:@"0011" forKey:@"3"];
    [hexDic setObject:@"0100" forKey:@"4"];
    [hexDic setObject:@"0101" forKey:@"5"];
    [hexDic setObject:@"0110" forKey:@"6"];
    [hexDic setObject:@"0111" forKey:@"7"];
    [hexDic setObject:@"1000" forKey:@"8"];
    [hexDic setObject:@"1001" forKey:@"9"];
    [hexDic setObject:@"1010" forKey:@"a"];
    [hexDic setObject:@"1011" forKey:@"b"];
    [hexDic setObject:@"1100" forKey:@"c"];
    [hexDic setObject:@"1101" forKey:@"d"];
    [hexDic setObject:@"1110" forKey:@"e"];
    [hexDic setObject:@"1111" forKey:@"f"];
    
    NSMutableString *binaryString=[[NSMutableString alloc] init];
    if (hex.length) {
        for (int i=0; i<[hex length]; i++) {
            NSRange rage;
            rage.length = 1;
            rage.location = i;
            NSString *key = [hex substringWithRange:rage];
            [binaryString appendString:hexDic[key]];
        }

    }else{
        for (int i=0; i<binary.length; i+=4) {
            NSString *subStr = [binary substringWithRange:NSMakeRange(i, 4)];
            int index = 0;
            for (NSString *str in hexDic.allValues) {
                index ++;
                if ([subStr isEqualToString:str]) {
                    [binaryString appendString:hexDic.allKeys[index-1]];
                    break;
                }
            }
        }
    }
    return binaryString;
}

有了这几种转换函数,完成上面的功能就容易多了,具体怎么操作这里就不写一一出来了。但总感觉怪怪的,这么一个小功能怎么要写这么一大堆代码,当然还可以用C语言的方法去解决。这里主要是为了展示iOS中数据如何转换,C语言的实现方法这里就不写了,有兴趣的同学可以研究下。

附带两个函数

int转NSData

- (NSData *) setId:(int)Id {
//用4个字节接收
    Byte bytes[4];
    bytes[0] = (Byte)(Id>>24);
    bytes[1] = (Byte)(Id>>16);
    bytes[2] = (Byte)(Id>>8);
    bytes[3] = (Byte)(Id);
    NSData *data = [NSData dataWithBytes:bytes length:4];
}

NSData转int

接受到的数据0x00000a0122

//4字节表示的int
NSData *intData = [data subdataWithRange:NSMakeRange(2, 4)];
    int value = CFSwapInt32BigToHost(*(int*)([intData bytes]));//655650
//2字节表示的int
NSData *intData = [data subdataWithRange:NSMakeRange(4, 2)];
    int value = CFSwapInt16BigToHost(*(int*)([intData bytes]));//290
//1字节表示的int
char *bs = (unsigned char *)[[data subdataWithRange:NSMakeRange(5, 1) ] bytes];
    int value = *bs;//34
------------------------
//补充内容,因为没有三个字节转int的方法,这里补充一个通用方法
- (unsigned)parseIntFromData:(NSData *)data{
    
       NSString *dataDescription = [data description];
       NSString *dataAsString = [dataDescription substringWithRange:NSMakeRange(1, [dataDescription length]-2)];
    
       unsigned intData = 0;
       NSScanner *scanner = [NSScanner scannerWithString:dataAsString];
       [scanner scanHexInt:&intData];
    return intData;
}

这两个转换在某些场景下使用频率也是挺高的,蓝牙里面的数据转换基本也就这么多了,希望能够帮助大家。 更多关于字节编码的问题,大家可以点这里:传送门

扩展

基于CoreBluetooth4.0框架的连接BLE4.0的Demo:你不点一下吗